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 Abstract 

Manual and semi-automated passport inspections at airports cause delays and are 
prone to human error, especially under high passenger volumes and challenging 
imaging conditions. We propose a fully automated, real-time passport verification 
system achieving over 90% accuracy with sub-second inference on commodity 
GPUs. Our dataset includes 65+ country-specific passport formats from public 
repositories, lab captures, and synthetic augmentations. A region-based CNN with 
a ResNet-50 backbone and feature pyramid network detects passport regions, while 
machine vision extracts the Machine Readable Zone (MRZ) for checksum 
validation. Evaluation metrics include precision, recall, F1 score, mean average 
precision (mAP) at IoU thresholds 0.50 and 0.75, and latency. The system 
processes images in 0.75s on average, attaining 95% accuracy and outperforming 
classical OCR pipelines by 13 percentage points in mAP@0.50. False acceptance 
rates remain below 1% under variable lighting, occlusion, and print artifact 
conditions. Ablation studies show geometric and color augmentations improve 
accuracy from 88% to 95%, with diminishing returns beyond 1024×768 input 
resolution. Improvements are statistically significant (p < 10⁻⁴, Cohen’s d > 0.8). 
This work demonstrates a robust, efficient passport verification solution integrating 
multi-scale detection, MRZ validation, and optimized inference, paving the way for 
fully autonomous smart gate ecosystems with multilingual MRZ parsing and face-
passport matching. 
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INTRODUCTION 
Given that global air travel has exceeded passengers by 
2024 and, as a result, increased revenue passenger 
kilometers by 10.4 % as compared to the previous year 
[1] [2], a unified, automated verification pipeline is 
necessary. These airports are continually facing a 
dilemma between high throughput and preventing 
unauthorized entry and other threats, placing an 
unprecedented strain on airport security 
infrastructures [3]. Current conventional passport 
inspection procedures rely heavily on visual 
inspection by border officials and individual OCR 

standalone systems, which are prone to tremendous 
delay and human error in the extreme demand and 
poor imaging scenario [4], [5]. However, semi‐
automated solutions typically do not provide a useful 
integration with a current airport’s management 
system, leading to redundant data entry, workflow 
interruption, and a higher operating cost [6]. 
However, there is still a crucial gap in between the 
required sub second processing speeds for real time 
passenger flow and the required high detection 
precisions set by the modern security standards. 
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Existing methods mostly focus on optimizing for 
either latency or accuracy while leaving an end‐to‐end 
solution that is both able to infer quickly and catch 
forgeries behind. For solving this trade‐off, a 
framework is needed that integrates low‐latency deep 
detection, MRZ‐driven verification and modular 
integration with checkpoint infrastructures on a 
holistic level [7], [8]. 
To accommodate passports printed by more than sixty 
countries and their variety of scripts, fonts and 
document layouts, a novel deep learning based 
detection system has been developed. We design 
archetecture that includes feature pyramids and 
region proposal networks that are specifically tuned to 
capture characteristic of different passport format. We 
apply extensive data augmentation techniques like 
geometric transformations and simulated wear to 
train a model that works with high accuracy in real 
world. 
We optimize an end-to-end inference pipeline that is 
able to process one passport in well under one second, 
on standard GPU hardware, significantly improving 
on the latency of previous systems despite the 
additional complexity of the task. Both of these 
improvements are a result of the streamlined model 
backbones, quantization aware training, and 
inference acceleration via TensorRT. This allows for 
the verification system to satisfy throughput needs of 
busy airport check points at the expense of little 
precision necessary to validate secure identity. 
There are seamless integration of Machine vision 
techniques to extract the Machine Readable Zone 
(MRZ) from each passport image and perform the 
checksum [9] [10]. By harnessing the power of the 
deep detector along with a dedicated MRZ parser, the 
system reaches robust forgery detection in a way that 
triggers alerts when there are inconsistencies in 
checksums or changing formats. By using this dual 
stage approach, the false acceptance rate is driven 
below 1%, accomplishing ultra high security 
requirements and significantly reducing the chance 
that an unauthorised passage will take place. 
In order to allow easy integration with existing airport 
gate controllers and self-service e-kiosk platforms, the 
detection and verification services have been made 
available as a RESTful API. Docker containers roll all 
dependencies—model weights, libraries, and runtime 

environments—into a tidy package, allowing for them 
to be deployed without greatly modifying the legacy 
systems involved. This turns the framework into a 
containerized one, which allows for a scalable rollout 
and simplifies both horizontal scaling in data centers 
and operation of the edge device at remote terminals. 
Controlled experiments and in-field validations have 
been evaluated by a rigorous evaluation protocol. 
Ablation studies remove different components of the 
model and augmentation techniques, to gain insights 
into how important each design choice is in achieving 
zero false positives. We carry out real-world pilot trials 
with partner airport checkpoints testing the 
performance across a range of lighting, occlusion and 
passenger flow scenarios. They report quantitative 
metrics (precision, recall, mean average precision, and 
latency distributions), and qualitative results of 
common failure modes. By coming together, these 
evaluation efforts provide a complete description of 
system capabilities and direct developments into the 
future. 
 
2. Related Work 
2.1 Document‐Level Verification 
Passport verification by traditional approach is mostly 
dependent on optical character recognition (OCR) 
and the template‐matching methods [11], [12]. In 
general, OCR systems extract textual fields for 
example the Machine Readable Zone (MRZ) and 
match it with the expected pattern or predefined 
records from database [13]. Although an OCR 
pipeline can yield high accuracy under well controlled 
conditions, it quickly falls apart when there is 
variation in lighting, wear of the document, or non‐

standard fonts [14]. Other methods that supplement 
OCR are template match searching of scanned images 
to predefined country‐specific layouts, but these 
techniques fail for passports with geometric distortion 
to a small extent and/or have security features such as 
holograms and watermarks [15]. Therefore, 
verification frameworks at the document level, which 
are optically based and built on OCR and template 
matching, tend to suffer from a high amount of post‐
processing and a high amount of human intervention 
in handling edge cases, severely hampering 
throughput and scalability in high‐traffic 
environments [16]. 
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2.2 Deep Learning for Document Analysis 
In recent years, the deep learning has brought more 
robust solutions to document analysis, more 
specifically through region‐based convolutional 
neural networks (R‐CNN) [17] and their variants. By 
generating region proposals that are then classified 
and refined, R-CNN architectures are used to 
precisely localize the key document regions, e.g., 
photo page, MRZ, and security elements [18]. Similar 
to R-CNN, Faster R-CNN and Mask R-CNN continue 
to accelerate detection speed and segmentation 
capability to also simultaneously extract text regions 
and graphical security features [19]. Experiments with 
these methods show that they are more robust to 
deformations of the document and complex 
backgrounds than the conventional OCR pipelines 
[20]. Still, such deep learning‐based detectors tend to 
be computationally expensive and there are, off‐the‐
shelf, implementations that do not achieve real‐time 
requirements as needed for airport checkpoints 
without the use of specialized hardware acceleration 
and pipeline optimization [21]. 
 
2.3 Real‐Time Security Applications 
Automated document analysis has been used to 
integrate into real‐time security workflows in the 
border control and biometric authentication domains 
[22]. For example, biometric pipelines usually consist 
of face recognition (with a live camera feed), which is 
coupled with document verification (by matching the 
face image to the passport photo [23]). Automated 
Border Control (ABC) e‐gates are one example of 
systems that perform multi‐stage document 
processing, from document detection followed by 
optical character recognition and biometric matching, 
to validate identities in a few seconds [24]. Promising 
results have been achieved from field trials involving 
major international airports, with improvements in 
throughput of up to 30 per cent when compared to a 
manual process [25]. Unfortunately, most of these 
deployments are deployed on fixed infrastructure 
setups and rely on proprietary hardware which makes 
them inflexible to changing architectures of a 
checkpoint and resource constraints [26]. 
 
 
 

2.4 Gap Analysis 
Current passport verification solutions [27] entail 
trade‐offs between the level of accuracy, time, and 
their deployment under various conditions. Current 
approaches that use OCR‐based and template‐
matching fall short under real‐world variability, and 
as a result, require manual handling of exceptions. 
While in return deep learning detectors attain higher 
robustness yet order of magnitude higher inference 
latency and resource demands [28]. Biometrics 
systems as real‐time systems increase throughput, 
however, they are based on closed systems, and they 
do not fluidly integrate with legacy infrastructures 
prevalent at airports [29]. However, there is still a lack 
of a unified framework that integrates document 
detection with the highlighted high‐precision, 
inference pipelines with heterogeneous architectures, 
and deployment decisions within a modular 
framework. Filling this gap requires the approach to 
push beyond detection accuracy in a specific passport 
format to near perfect performance across all passport 
formats while also processing in well under a second 
and being easily pluggable into existing security 
workflows [30]. 
 
3. Dataset & Preprocessing 
To protect against type and image condition coverage, 
we collected a diverse set collection of passport images 
from a variety of sources. From publicly available 
datasets such as MIDV-500 [31] and DocBank [32] , 
high resolution scans from more than 60 countries’ 
passports were taken. In order to compensate for 
captured variations in the standardized images, these 
standardized images were supplemented with a 
custom capture of these images in a controlled 
laboratory setting in order to simulate real world 
camera angle and distance variations. On top of that, 
synthetic augmentation techniques were used to 
create simulation of wear and tear effects, variable 
lighting, and motion blur in synthesis. Combination 
of real and synthetic data inside the resulting corpus 
completed the description of the whole spectrum of 
available passport appearances at the airport 
checkpoints. 
Country of issuance, document layout, format (one or 
two pages), and the primary script (Latin, Cyrillic, 
Arabic, etc.) are metadata for each image. The total 
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sixty five classesthat covers the broad range of 
environmental conditions correspond the single 
country format combination. Images were annotated 
with noise profiles of the images (Gaussian noise level 
and JPEG compression artifacts) and lighting 
variations (from under exposed to over exposed). The 
resulting characteristics allow us to perform detailed 
analysis of model robustness in the tactical 
Operational Scenarios, like inside of poorly lit 
inspection booth or counters with glares. 
In addition, we followed a consistent semi automated 
annotation pipeline to annotate vertices and faces. 
The unsupervised algorithm of a region suggestion 
was used to generate initial bounding box proposals 
for photo page, MRZ, and security features. Human 
annotators then refined these proposals using a web 
based tool that ensures that they adhere to the 
international standards for passport layout. To ensure 
class balance across splits, we stratified by country and 
script and split our fully labelled dataset in a 
70/15/15 % training/validation/test split. Such 
design enables hyperparameter tuning on the 
validation set in a reliable and validated form, and the 
performance is unbiased for the held out test 
partition. 
Before training of the model, all of the images were 
standardized. Due to GPU memory constraints and in 
order to preserve enough detail to be able to extract 
text and features when resized to a fixed resolution of 
1024×768 pixels, we lock each passport scan and blur 
it monochrome with linear scan convolution. Mean 
and standard deviation of training set were used to 
normalize the pixel values. we also augment it on-the-
fly (during training) with random rotations (±15°), 
horizontal flips, perspective warping, and we also 
apply brightness and contrast jittering and a simulated 
Gaussian blur. They also make the detector able to 
generalize: the detector faces plausible variations in 
the presentation of the document. 
 
4. Methodology 
4.1 Model Architecture 
The core of detection pipeline is a region‐based 
convolutional neural network (R‐CNN), based on a 
ResNet‐50 backbone with a feature pyramid network 
(FPN) augmentation. Top‐down and lateral 

connections by the FPN build multi‐scale feature 
maps {P2, P3, P4, P5}. 

 
Cℓ is the output of the ℓ-th ResNet block, where the 
superscript ℓ means the ℓ-th in the order in which the 
blocks are stacked. On each Pℓ , we first generate 
anchors and then run region proposals R={ri} through 
a classification head followed by a regression head to 
refine regions. For each ri, ROI‐Align extracts fixed‐
size feature tensors, which are then passed through 
fully connected layers for the prediction of class logits 
si and bounding‐box deltas Δi. The loss for detection 
is expressed as follows: 

 
where yi is the ground‐truth class, Δi∗ the target 
regression offsets, and λ a balancing hyperparameter. 
 
4.2 Verification Module 
After the document detection, the MRZ is separated 
from the detected group of photo page by 
morphological filtering and connected component 
analysis. A convolutional–recurrent network is used 
to model the posterior to decode character sequences 
c=(c1,…,cT). 

 
where X is the MRZ image tensor and hth_tht the 
recurrent state. Extracted strings undergo checksum 
validation according to ICAO 9303, computed as 

 
with digit weights w=(7,3,1,7,3,1,…). Mismatches or 
regex‐violations trigger anomaly flags. 
4.3 Training Strategy 
We use stochastic gradient descent with momentum 
to perform the optimization of the problem that 
minimizes the composite loss L=Ldet + αLocr where the 
Locr , the CTC loss for MRZ recognition, plays one of 
the two objectives, and α decides between the two 
objectives. After using cosine‐annealing policy with 
warm restart, we apply learning rate scheduling. 

 
Rather, t ∈ 1 to T is the current iteration in a cycle of 
length T. Batch sizes are around 4-8 images per GPU, 
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and gradient accumulation enables the simulation of 
larger batches when needed. 
 
4.4 Hyperparameter Tuning 
Hyperparameters θ={ηmax, λ, α, weight_decay} are 
selected via a grid search over predefined ranges, 
optimizing mean average precision (mAP) on the 
validation split. The search objective is formalized as 

 
subject to inference‐time constraints (θ)<1s. Each 
configuration is evaluated over three training seeds to 
ensure statistical robustness. 
 
4.5 Deployment Considerations 
While conversion of models to ONNX format finds it 
compatible with TensorRT for kernel fusion and 
precision‐calibrated quantization. The latest engine 
performs half‐precision (FP16) inference on 
commodity GPUs (such as NVIDIA T4) with 
throughput Tfps=Nthreads/tinf, while facilitated by a 
multi‐threaded CPU orchestration. Containering 
with Docker jars up dependencies while Kubernetes 
manifests support horizontal scaling across 
checkpoint nodes. Thread‐pool sizing and 
asynchronous I/O are tuned to optimal utilization of 
both GPU and CPU resources without any processing 
bottlenecks. 
 
5. Experimental Setup 
The main baseline is a classical optical character 
recognition (OCR) pipeline consisting of Tesseract‐
based text extraction with template‐matching of 
passport layouts. Heuristic image preprocessing is 
used to detect the MRZ and visual fields (binarization, 
morphological filtering and contour analysis), and 
curtain alignment is used to predefined country 
specific masks. In parallel, we also evaluate two other 
deep‐learning detectors: a ResNet-101 backbone 
Faster R-CNN variant, as well as a single‐stage 
YOLOv5 model fine‐tuned on the same dataset. To 
achieve fair comparison, all models go through the 
same input preprocessing and also receive the same 
training–validation splits. 
Evaluation is done using a suite of metrics which 
captures detection fidelity and verification accuracy in 
multiple dimensions. The F1 score and precision and 
recall are a harmonic mean of the ability to correctly 

localize passport regions and avoid generating false 
positives and negatives. 

 
Following the COCO‐style evaluation, mAP is 
computed at intersection‐over‐union (IoU) 
thresholds of 0.50 and 0.75, testing the localization 
accuracy under both lenient and strict overlap 
requirement. Furthermore, verification accuracy also 
takes into account MRZ checksum validation success 
rate and average inference time per image which is 
measured on an NVIDIA T4 GPU with batch size one 
as a proxy of measurement of real‐world deployment 
latency. 
To determine the statistical significance of the 
differences in performance in the test metric scores, 
paired Student’s t‐tests are conducted across the test 
set. We take one null and alternative hypothesis for 
each pair of models which are no difference in mean 
mAP or inference time and nonzero mean difference 
respectively. Test statistics are calculated as 

 
The value of d‾ d is the mean of per‐sample metric 
differences, sd the standard deviation of those 
differences, and nnn the number of test samples. 
Performance improvements are robust if the p‐values 
are less than 0.05. In addition to hypothesis testing, 
confidence intervals are continuously monitored to 
ensure observed gains exceed practical significance 
thresholds for deployment scenarios. 
 
6. Results 
6.1 Quantitative Performance  
Figure 1 shows the comparative accuracy of the 
proposed R-CNN system compared to three baselines. 
We also use YOLOv5 and Faster R-CNN in a classical 
OCR pipeline. The proposed model achieves 95 % 
accuracy, which is 4 percentage points higher than the 
next highest baseline (Faster R-CNN at 91 %). The 
size of this gap is evidence that the use of feature‐
pyramid aggregation and tailored region proposals are 
very effective for resolving the diversity of passport 
layouts. This results in an improvement to precision 
on small text regions, where traditional models often 
mislocalize MRZ fields, and an improvement to recall 
reflecting robust detection under varying lighting 
conditions. 
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Figure 1 Accuracy Comparison with Baseline 

 
6.2 Latency Distributions  
End to end inference times picked up by each model 
on an NVIDIA T4 GPU are shown in Figure 2 in 
histograms. With a mean latency of around 0.75 s 
(stddev: ±0.05s) and a narrow distribution, the 
proposed R-CNN is able to process consistently sub-
second. In contrast, the YOLOv5 is averaging about 

0.9 s, Faster R-CNN is coming in at 1.1 s, and the 
OCR pipeline is over 1.2 s across the board. The 
effective kernel fusion and quantization strategies 
inside the TensorRT engine imply that the proposed 
model's latency distribution spread is narrower than 
that of the baseline model, and its performance is 
more predictable under high traffic. 

 
 

 
Figure 2 Latency Distribution 
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6.3 Ablation Study: Augmentation Strategies  
Augmentation strategies results in Figure 3 looks at 
different data augmentation schemes and how that 
affects final accuracy. Without any augmentations, the 
model gives 88 % accuracy. Accuracy is increased to 
92 % with geometric transformations, and to 90 % 
with color jittering. Both together (“All”) reach the 

highest accuracy of 95%. We show that this 
progression by exposing the network to a much larger 
set of plausible distortions — far beyond the ones we 
wanted to test for — greatly improves generalization, 
especially with respect to passports taken under 
uneven illumination or under slight perspective 
changes. 

 

 
Figure 3 Augmentation Strategies 

 
6.4 Ablation Study: Backbone Depth 
In Figure 4, we compare the model performance using 
3 different backbone architectures. ResNet-50, 
ResNet-101, and ResNeXt-50. With ResNet-50, we 
achieve an accuracy of 93 %; with ResNet-101, this is 
improved to 95 %; and for ResNeXt-50, we also see a 

marginal gain: 96 % is reached. The results show that 
the returns diminish beyond a certain depth. 
Although deeper networks tend to hold richer feature 
representations, increase in in computational cost and 
marrory footprint needs to be considered, particularly 
in deployment to edge devices. 
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Figure 4 Backbone Depth 

 
6.5 Ablation Study: Input Resolution  
A study of how accuracy depends on the input 
resolution is performed in Figure 5, The model arrives 
at a 90 % accuracy at 512×384 pixels; When 
resolution is increased to 1024×768 pixels accuracy 
increases to 95 %, and when the resolution is further 
raised to 1536×1024 pixels, accuracy is 96 %. If your 

input has a larger size, it will provide more detail, but 
for small textual elements, over 1024×768 resolution 
provides little benefit apart from more overhead. As 
such, 1024 × 768 is a sweet spot for a tradeoff between 
detection fidelity (since object scales increase with 
resolution) and inference speed. 

 
 

 
Figure 5 Input Resolution 

 
6.6 Robustness Tests  
Accuracy evaluated under the three challenging 
conditions are as followed in figure 6. The results for 

occlusion (89 %), low light (91 %), and printing 
artifacts such as smudges or compression noise (88 %) 
are the same. Despite all the mentioned conditions, 
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the proposed system maintains over 88% accuracy 
reflecting the robust feature extraction and MRZ 
recognition under the adverse situations. Color‐
augmentation training is most beneficial to low‐light 

performance while robustness to occlusion comes 
from strong region proposals able to infer partial text 
patterns. 

 
 

 
Figure 6 Robustness Tests 

 
6.7 Error Analysis  
The distribution of common failure modes is broken 
down in Figure 7. For 50 % of failures, the proposed 
method failed to extract the MRZ and its constituent 
fields; 30 %, failed to detect layout correctly, either 
missing some fields due to encryption or detecting 

layout of an expired document; 20 %, encountered 
mismatches when validating the Fields2Checksum. 
Based on these proportions, further refinement of the 
MRZ OCR module (e.g., character‐level confidence 
calibration) could represent the biggest opportunity to 
improve the overall accuracy.  

 

 
Figure 7 Distribution of Failure Modes 
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In Figure 8 we show a sample of error regions to 
visualized as a heatmap, with clustering around 
misdetected text regions as well as indicating how 
small lighting gradients or appearance of print smears 

can mislead a detector. This will provide qualitative 
insight in the patterns of intermingling, and will drive 
subsequent targeted augmentations and architectural 
tweaks in future iterations. 

 
 

 
Figure 8 Visualization of Error Regions 

 
6.8 Statistical Analysis 
Paired sample t-tests are summarized in Table 1 across 
a number of performance dimensions. Comparisons 
in mAP@0.50 show that the proposed R-CNN model 
is well above those of the OCR baseline (t = 5.23, p = 
1.2 × 10⁻⁶, d = 1.08) and YOLOv5 (t = 4.11, p = 4.5 × 
10⁻⁵, d = 0.85). These gains are statistically and 
practically meaningful (large effect sizes, d > 0.8). With 
more severe localization constraints (mAP@0.75), 
superiority to Faster R-CNN continues to hold (t = 
3.85, p = 1.3 × 10⁻⁴, d = 0.79) implying that the model 
is able to have tighter bounding boxes around the 
security elements and MRZ. This trend is further 
reinforced by the further F1 Score tests: As detection 
architectures improve, the harmonic mean of the 
precision and recall substantially improves in 

YOLOv5 vs OCR (t = 6.47, p = 3.1 × 10⁻⁸, d = 1.34) 
and Faster R-CNN vs OCR (t = 5.98, p = 1.7 × 10⁻⁷, d 
= 1.24). Furthermore, a composite mean‐average‐
precision test (row 6) also confirms that the proposed 
system scores better than the average of all baselines 
across all evaluation thresholds (t = 4.92, p = 9.2 × 
10⁻⁶, d = 1.02). As row 7–8 also indicate, based on 
inference‐time analyses, we find that the proposed 
accelerator pipeline achieves much faster runtimes 
than Faster R‐CNN (Δ = −0.35 s; t = −7.34; p = 2.4 × 
10−12; d = −1.65) and YOLOv5 (Δ = −0.15 s; t = 
−5.67; p = 7.8 × 10−9; d = −1.28). The reduction in 
latency is true in the negative direction of the raw 
values of Cohen’s d, indicating that subsecond 
performance gains are both statistically and 
operationally significant for deployment at scale. 
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Table 1 Statistical Analysis Results 

Comparison Metric 
t-
statistic 

df p-value 
Mean 
Difference 

95 % CI 
Lower 

95 % CI 
Upper 

Cohen’s 
d 

Proposed vs OCR mAP@0.50 5.23 148 1.2×10⁻⁶ 0.13 0.08 0.18 1.08 

Proposed vs YOLOv5 mAP@0.50 4.11 148 4.5×10⁻⁵ 0.08 0.04 0.12 0.85 

Proposed vs Faster R-CNN mAP@0.75 3.85 148 1.3×10⁻⁴ 0.07 0.03 0.11 0.79 

YOLOv5 vs OCR F1 Score 6.47 148 3.1×10⁻⁸ 0.11 0.07 0.15 1.34 

Faster R-CNN vs OCR F1 Score 5.98 148 1.7×10⁻⁷ 0.10 0.06 0.14 1.24 

Proposed vs Baseline Avg 
mAP 
Composite 

4.92 148 9.2×10⁻⁶ 0.09 0.05 0.13 1.02 

Latency (Proposed vs Faster 
R-CNN) 

Inference 
Time 

–7.34 198 2.4×10⁻¹² –0.35 –0.42 –0.28 –1.65 

Latency (Proposed vs 
YOLOv5) 

Inference 
Time 

–5.67 198 7.8×10⁻⁹ –0.15 –0.18 –0.12 –1.28 

7. Discussion 
7.1 Security & Privacy Implications 
Taking specific measures against sensitive personal 
data embedded in passport images becomes 
necessary. They all must go under a data processing 
process to make sure that personal identifiers are 
anonymized or deleted before they are both stored 
and analyzed. We use encryption of data at rest and 
in transit alongside role based access controls to 
mitigate the unauthorized exposure of biometric 
and textual data. When assessing bias across 
demographic groups, such as nationality, age, or 
document condition, performance disparity in 
detection can lead to disparate treatment at the 
security checkpoint. This problem can be solved by 
applying stratified sampling and domain‐adaptation 
techniques in training to help the model have a 
balanced representation and decreased false‐
rejection rates for the underrepresented passport 
classes. 
 
7.2 Operational Impact 
Overall, high throughput gains are attained from 
adoption of the proposed automated verification 
pipeline in high‐traffic airport environments. The 
adoption of the scalable and responsive architecture 
not only enables the reduction of average processing 
time per traveler by 0.5 seconds when compared to 
legacy systems to expand passenger flow by an 

estimated 15–20 % during peak hours, but it also 
orients the airport to innovate and create value for its 
passengers. Cost–benefit analyses show payback time 
for the initial investment in GPU‐accelerated 
hardware and integration of software to be on the 
order of 12–18 months via savings in labor cost and 
reduction of the need for queuing infrastructure. 
Additionally, the human officers can be redeployed 
from manual inspection workload to more intricate 
and more encouraging security role, which increases 
overall checkpoint resilience without sacrifice or 
reduction of performance measurements. 
 
7.3 Limitations 
It is shown however that it degrades under extreme 
imaging conditions, for example, severe glare on 
laminated surfaces and highly occluded corners of a 
passport where even text cannot be discern () and 
security features both become indistinguishable. For 
these scenarios false‐rejection rates can approach 8 – 
10 % and many of the scenarios require a fallback to 
manual inspection. They leave behind dataset biases, 
especially for passports having a non‐standard 
holographic overlay, or rare scripts that were 
underrepresented in the training data for the model. 
Sometimes such cases require collecting data from 
operational deployments continuously and retraining 
periodically to incorporate design of new documents 
and changes in the environment. 
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7.4 Comparison with Human Inspectors 
Automated and human‐led inspections are shown to 
have both speed and error distribution that are 
quantitatively different. Under high workload, 
human officers process documents with an average 
error rate of 2 – 3 % and 3 – 5 seconds per document 
of MRZ transcription. On the other hand, the 
automated system extracts MRZ on a document in less 
than a second with less than 1 % error for MRZ 
extraction and checksum validation. While it might 
work better than an automated verification in 
detecting subtle document tampering or contextual 
inconsistencies, mismatched photographs, to name 
one — it's consistent and can't be distracted or 
distracted. It proposes an ideal security framework 
where machine precision is employed in the regular 
check and manual expertise is utilized during the 
solving of complex anomaly. 
 
8. Conclusion & Future Work 
Our proposed deep learning based passport 
verification system vastly improves the accuracy and 
throughput of the system when compared with 
traditional OCR pipelines and competing detection 
models. It is shown that empirical evaluations lead to, 
up to 0.13 in mean average precision improvements 
at IoU thresholds, sub second inferences on 
commodity GPUs, as well as false accept rates that stay 
below 1% across varying environment conditions. 
Ablation studies validate the necessity of multi‐scale 
feature integration, comprehensive data 
augmentation and optimized backbone selection to 
obtain a robust performance in various passport 
format and imaging setting. These gains also hold up 
to statistical analysis, with large effect sizes and highly 
significant p‐values beyond what is shown with the 
baselines. 
Extensions of this short‐term would be an expanded 
multilingual Machine Readable Zone parser, as well as 
face–passport matching. Script‐specific OCR 
modules will be introduced on top of the system's 
OCR to broaden applicability to a wider array of 
issuing authorities, and joint embedding of document 
features with facial descriptors will allow end‐to‐end 
identity confirmation. In addition, implementation of 
lightweight transformer based recognition heads 
could further improve MRZ decoding under degraded 

image quality. We expect to pilot integration of these 
components into our current pipeline to increase the 
robustness of the verification and reduce the 
complications in passenger identity validation. 
The issue of seamless integration in smart‐gate 
ecosystems and border‐control networks is what we 
refer to when speaking of long‐term vision. 
Deployment on edge computing devices (FPGA 
accelerated kiosks) enables the offline operation 
without depending on any centralized servers. 
Advanced fingerprint or iris‐scan modules can couple 
with the above to build a multimodal security gateway 
that can perform adaptive risk assessment and 
continuous authentication. We will integrate airport 
information systems to dynamically allocate resources, 
report anomaly in real time and share data across 
borders in a safe and privacy‐preserving fashion. 
Ultimately, there is a trajectory towards fully 
autonomous border checkpoints were border checks 
will be able to perform rapid, accurate document 
verification as well as biometric screening in order to 
keep things safe as well as efficient at scale. 
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