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Abstract

Manual and semi-automated passport inspections at airports cause delays and are
prone to human error, especially under high passenger volumes and challenging
imaging conditions. We propose a fully automated, real-time passport verification
system achieving over 90% accuracy with sub-second inference on commodity
GPUs. Our dataset includes 65+ country-specific passport formats from public
repositories, lab captures, and synthetic augmentations. A region-based CNN with
a ResNet-50 backbone and feature pyramid network detects passport regions, while
machine vision extracts the Machine Readable Zone (MRZ) for checksum
validation. Evaluation metrics include precision, recall, F1 score, mean average
precision (mAP) at IoU thresholds 0.50 and 0.75, and latency. The system
processes images in 0.75s on average, attaining 95% accuracy and outperforming
classical OCR pipelines by 13 percentage points in mAP@0.50. False acceptance
rates remain_below 1% under variable lighting, occlusion, and print artifact
conditions. Ablation studies show geometric and color augmentations improve
accuracy from 88% to 95%, with diminishing returns beyond 1024x768 input
resolution. Improvements are statistically significant (p < 107% Cohen’s d > 0.8).
This work demonstrates a robust, efficient passport verification solution integrating
multiscale detection, MRZ validation, and optimized inference, paving the way for
fully autonomous smart gate ecosystems with multilingual MRZ parsing and face-
passport matching.

INTRODUCTION

Given that global air travel has exceeded passengers by
2024 and, as a result, increased revenue passenger
kilometers by 10.4 % as compared to the previous year
(1] [2], a unified, automated verification pipeline is
necessary. These airports are continually facing a
dilemma between high throughput and preventing
unauthorized entry and other threats, placing an
unprecedented airport  security
infrastructures [3]. Current conventional passport
inspection procedures rely heavily on visual
inspection by border officials and individual OCR

strain on

standalone systems, which are prone to tremendous
delay and human error in the extreme demand and
poor imaging scenario [4], [5]. However, semi-
automated solutions typically do not provide a useful
integration with a current airport’s management
system, leading to redundant data entry, workflow
interruption, and a higher operating cost [6].

However, there is still a crucial gap in between the
required sub second processing speeds for real time
passenger flow and the required high detection
precisions set by the modern security standards.
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Existing methods mostly focus on optimizing for
either latency or accuracy while leaving an end-to-end
solution that is both able to infer quickly and catch
forgeries behind. For solving this trade-off, a
framework is needed that integrates low-latency deep
detection, MRZ-driven verification and modular
integration with checkpoint infrastructures on a
holistic level [7], [8].

To accommodate passports printed by more than sixty
countries and their variety of scripts, fonts and
document layouts, a novel deep learning based
detection system has been developed. We design
archetecture that includes feature pyramids and
region proposal networks that are specifically tuned to
capture characteristic of different passport format. We
apply extensive data augmentation techniques like
geometric transformations and simulated wear to
train a model that works with high accuracy in real
world.

We optimize an end-to-end inference pipeline that is
able to process one passport in well under one second,
on standard GPU hardware, significantly improving
on the latency of previous systems despite the
additional complexity of the task. Both of these
improvements are a result of the streamlined model
backbones, quantization aware training, and
inference acceleration via TensorRT. This allows for
the verification system to satisfy throughput needs of
busy airport check points at the expense of little
precision necessary to validate secure identity.

There are seamless integration of Machine vision
techniques to extract the Machine Readable Zone
(MRZ) from each passport image and perform the
checksum [9] [10]. By harnessing the power of the
deep detector along with a dedicated MRZ parser, the
system reaches robust forgery detection in a way that
triggers alerts when there are inconsistencies in
checksums or changing formats. By using this dual
stage approach, the false acceptance rate is driven
below 1%, accomplishing wultra high security
requirements and significantly reducing the chance
that an unauthorised passage will take place.

In order to allow easy integration with existing airport
gate controllers and self-service e-kiosk platforms, the
detection and verification services have been made
available as a RESTful API. Docker containers roll all

dependencies—model weights, libraries, and runtime

environments—into a tidy package, allowing for them
to be deployed without greatly modifying the legacy
systems involved. This turns the framework into a
containerized one, which allows for a scalable rollout
and simplifies both horizontal scaling in data centers
and operation of the edge device at remote terminals.
Controlled experiments and in-field validations have
been evaluated by a rigorous evaluation protocol.
Ablation studies remove different components of the
model and augmentation techniques, to gain insights
into how important each design choice is in achieving
zero false positives. We carry out real-world pilot trials
with partner airport checkpoints testing the
performance across a range of lighting, occlusion and
passenger flow scenarios. They report quantitative
metrics (precision, recall, mean average precision, and
latency distributions), and qualitative results of
common failure modes. By coming together, these
evaluation efforts provide a complete description of
system capabilities and direct developments into the
future.

2. Related Work

2.1 Document-Level Verification

Passport verification by traditional approach is mostly
dependent on optical character recognition (OCR)
and the template-matching methods [11], [12]. In
general, OCR systems extract textual fields for
example the Machine Readable Zone (MRZ) and
match it with the expected pattern or predefined
records from database [13]. Although an OCR
pipeline can yield high accuracy under well controlled
conditions, it quickly falls apart when there is
variation in lighting, wear of the document, or non-
standard fonts [14]. Other methods that supplement
OCR are template match searching of scanned images
to predefined country-specific layouts, but these
techniques fail for passports with geometric distortion
to a small extent and/or have security features such as
holograms and watermarks [15]. Therefore,
verification frameworks at the document level, which
are optically based and built on OCR and template
matching, tend to suffer from a high amount of post-
processing and a high amount of human intervention
in handling edge cases, severely hampering
throughput and  scalability in  high-traffic
environments [16].
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2.2 Deep Learning for Document Analysis

In recent years, the deep learning has brought more
robust solutions to document analysis, more
specifically through region-based convolutional
neural networks (R-CNN) [17] and their variants. By
generating region proposals that are then classified
and refined, R-CNN architectures are used to
precisely localize the key document regions, e.g.,
photo page, MRZ, and security elements [18]. Similar
to R-CNN, Faster R-CNN and Mask R-CNN continue
to accelerate detection speed and segmentation
capability to also simultaneously extract text regions
and graphical security features [19]. Experiments with
these methods show that they are more robust to
deformations of the document and complex
backgrounds than the conventional OCR pipelines
[20]. Still, such deep learning-based detectors tend to
be computationally expensive and there are, off-the-
shelf, implementations that do not achieve real-time
requirements as needed for airport checkpoints
without the use of specialized hardware acceleration
and pipeline optimization [21].

2.3 Real-Time Security Applications

Automated document analysis has been used to
integrate into real-time security workflows in the
border control and biometric authentication domains
[22]. For example, biometric pipelines usually consist
of face recognition (with a live camera feed), which is
coupled with document verification (by matching the
face image to the passport photo [23]). Automated
Border Control (ABC) e-gates are one example of
systems that perform multi-stage document
processing, from document detection followed by
optical character recognition and biometric matching,
to validate identities in a few seconds [24]. Promising
results have been achieved from field trials involving
major international airports, with improvements in
throughput of up to 30 per cent when compared to a
manual process [25]. Unfortunately, most of these
deployments are deployed on fixed infrastructure
setups and rely on proprietary hardware which makes
them inflexible to changing architectures of a
checkpoint and resource constraints [26].

2.4 Gap Analysis

Current passport verification solutions [27] entail
trade-offs between the level of accuracy, time, and
their deployment under various conditions. Current
approaches that use OCR-based and template-
matching fall short under real-world variability, and
as a result, require manual handling of exceptions.
While in return deep learning detectors attain higher
robustness yet order of magnitude higher inference
latency and resource demands [28]. Biometrics
systems as real-time systems increase throughput,
however, they are based on closed systems, and they
do not fluidly integrate with legacy infrastructures
prevalent at airports [29]. However, there is still a lack
of a unified framework that integrates document
detection with the highlighted high-precision,
inference pipelines with heterogeneous architectures,
and deployment decisions within a modular
framework. Filling this gap requires the approach to
push beyond detection accuracy in a specific passport
format to near perfect performance across all passport
formats while also processing in well under a second
and being easily pluggable into existing security

workflows [30].

3. Dataset & Preprocessing

To protect against type and image condition coverage,
we collected a diverse set collection of passport images
from a variety of sources. From publicly available
datasets such as MIDV-500 [31] and DocBank [32],
high resolution scans from more than 60 countries’
passports were taken. In order to compensate for
captured variations in the standardized images, these
standardized images were supplemented with a
custom capture of these images in a controlled
laboratory setting in order to simulate real world
camera angle and distance variations. On top of that,
synthetic augmentation techniques were used to
create simulation of wear and tear effects, variable
lighting, and motion blur in synthesis. Combination
of real and synthetic data inside the resulting corpus
completed the description of the whole spectrum of
available passport appearances at the airport
checkpoints.

Country of issuance, document layout, format (one or
two pages), and the primary script (Latin, Cyrillic,
Arabic, etc.) are metadata for each image. The total
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sixty five classesthat covers the broad range of
environmental conditions correspond the single
country format combination. Images were annotated
with noise profiles of the images (Gaussian noise level
and JPEG compression artifacts) and lighting
variations (from under exposed to over exposed). The
resulting characteristics allow us to perform detailed
analysis of model robustness in the tactical
Operational Scenarios, like inside of poorly lit
inspection booth or counters with glares.

In addition, we followed a consistent semi automated
annotation pipeline to annotate vertices and faces.
The unsupervised algorithm of a region suggestion
was used to generate initial bounding box proposals
for photo page, MRZ, and security features. Human
annotators then refined these proposals using a web
based tool that ensures that they adhere to the
international standards for passport layout. To ensure
class balance across splits, we stratified by country and
script and split our fully labelled dataset in a
70/15/15 % training/validation/test split. Such
design enables hyperparameter tuning on the
validation set in a reliable and validated form, and the
performance is unbiased for the held out test
partition.

Before training of the model, all of the images were
standardized. Due to GPU memory constraints and in
order to preserve enough detail to be able to extract
text and features when resized to a fixed resolution of
1024x768 pixels, we lock each passport scan and blur
it monochrome with linear scan convolution. Mean
and standard deviation of training set were used to
normalize the pixel values. we also augment it on-the-
fly (during training) with random rotations (+15°),
horizontal flips, perspective warping, and we also
apply brightness and contrast jittering and a simulated
Gaussian blur. They also make the detector able to
generalize: the detector faces plausible variations in
the presentation of the document.

4. Methodology

4.1 Model
The core of detection pipeline is a region-based
convolutional neural network (R-CNN), based on a
ResNet-50 backbone with a feature pyramid network
(FPN) augmentation. Top-down and lateral

Architecture

connections by the FPN build multi-scale feature
maps {P2, P3, P4, P5}.

Pl= C(mlel(of) U Upsample(Perl)ag =29,
Cq is the output of the £-th ResNet block, where the
superscript £ means the {-th in the order in which the
blocks are stacked. On each PL , we first generate
anchors and then run region proposals R={ri} through
a classification head followed by a regression head to
refine regions. For each r;, ROI-Align extracts fixed-
size feature tensors, which are then passed through
fully connected layers for the prediction of class logits
s; and bounding-box deltas A;. The loss for detection
is expressed as follows:

1 1 .
Liet = N ;Lcls(si,yi) + A N zl: L0} Lreg (A, AY)

where vy, is the ground-truth class, A the target
regression offsets, and A a balancing hyperparameter.

4.2 Verification Module
After the document detection, the MRZ is separated
from the detected group of photo page by
morphological filtering and connected component
analysis. A convolutional-recurrent network is used
to model the posterior to decode character sequences

c=(cl,...,cT).
T

P(c| X) =[] P(ct | he, X)
t=1

where X is the MRZ image tensor and hth_tht the

recurrent state. Extracted strings undergo checksum
validation according to ICAO 9303, computed as

n
Y w; (di mod 10) = 0 (mod 10)

=1
with digit weights w=(7,3,1,7,3,1,...). Mismatches or
regex-violations trigger anomaly flags.
4.3 Training Strategy
We use stochastic gradient descent with momentum
to perform the optimization of the problem that
minimizes the composite loss L=L,, + aL,. where the
Lo , the CTC loss for MRZ recognition, plays one of
the two objectives, and a decides between the two
objectives. After using cosine-annealing policy with

warm restart, we apply learning rate scheduling.

Nt = Tmin + % (nmax - nmin) |:1 + COS(TI' %)]

Rather, t € 1 to T is the current iteration in a cycle of
length T. Batch sizes are around 4-8 images per GPU,
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and gradient accumulation enables the simulation of
larger batches when needed.

4.4 Hyperparameter Tuning
Hyperparameters 0=(N.., A, &, weight_decay} are
selected via a grid search over predefined ranges,
optimizing mean average precision (mAP) on the
validation split. The search objective is formalized as
0* = argdmaxmAP,y,(0),

subject to inference-time constraints (0)<ls. Each
configuration is evaluated over three training seeds to
ensure statistical robustness.

4.5 Deployment Considerations
While conversion of models to ONNX format finds it
compatible with TensorRT for kernel fusion and
precision-calibrated quantization. The latest engine
performs half-precision (FP16) inference on
commodity GPUs (such as NVIDIA T4) with
throughput T¢ =N/ tinr, while facilitated by a
multi-threaded CPU orchestration. Containering
with Docker jars up dependencies while Kubernetes
manifests support horizontal  scaling  across
checkpoint nodes. Thread-pool sizing  and
asynchronous I/O are tuned to optimal utilization of
both GPU and CPU resources without any processing
bottlenecks.

5. Experimental Setup

The main baseline is a classical optical character
recognition (OCR) pipeline consisting of Tesseract-
based text extraction with template-matching of
passport layouts. Heuristic image preprocessing is
used to detect the MRZ and visual fields (binarization,
morphological filtering and contour analysis), and
curtain alignment is used to predefined country
specific masks. In parallel, we also evaluate two other
deep-learning detectors: a ResNet-101 backbone
Faster R-CNN variant, as well as a single-stage
YOLOV5 model fine-tuned on the same dataset. To
achieve fair comparison, all models go through the
same input preprocessing and also receive the same
training-validation splits.

Evaluation is done using a suite of metrics which
captures detection fidelity and verification accuracy in
multiple dimensions. The F1 score and precision and
recall are a harmonic mean of the ability to correctly

localize passport regions and avoid generating false

positives and negatives.
Precision x Recall
F1=2x

Precision + Recall

Following the COCO-style evaluation, mAP is
computed at intersection-over-union  (IoU)
thresholds of 0.50 and 0.75, testing the localization
accuracy under both lenient and strict overlap
requirement. Furthermore, verification accuracy also
takes into account MRZ checksum validation success
rate and average inference time per image which is
measured on an NVIDIA T4 GPU with batch size one
as a proxy of measurement of real-world deployment
latency.

To determine the statistical significance of the
differences in performance in the test metric scores,
paired Student’s t-tests are conducted across the test
set. We take one null and alternative hypothesis for
each pair of models which are no difference in mean
mAP or inference time and nonzero mean difference
respectively. Test statistics are calculated as

__a_
NG

The value of d” d is the mean of per-sample metric
differences, sd the standard deviation of those
differences, and nnn the number of test samples.
Performance improvements are robust if the p-values
are less than 0.05. In addition to hypothesis testing,
confidence intervals are continuously monitored to
ensure observed gains exceed practical significance
thresholds for deployment scenarios.

t

6. Results

6.1 Quantitative
Figure 1 shows the comparative accuracy of the
proposed R-CNN system compared to three baselines.
We also use YOLOv5 and Faster R-CNN in a classical
OCR pipeline. The proposed model achieves 95 %
accuracy, which is 4 percentage points higher than the
next highest baseline (Faster R-CNN at 91 %). The
size of this gap is evidence that the use of feature-
pyramid aggregation and tailored region proposals are
very effective for resolving the diversity of passport
layouts. This results in an improvement to precision
on small text regions, where traditional models often
mislocalize MRZ fields, and an improvement to recall
reflecting robust detection under varying lighting
conditions.

Performance
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Accuracy Comparison with Baselines

1.000

0.975 A

0.950
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0.900 -
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0.850 A

0.825 A

0.800 -

OCR Pipeline YOLOVS

Faster R-CNN Proposed R-CNN

Figure 1 Accuracy Comparison with Baseline

6.2 Latency Distributions
End to end inference times picked up by each model
on an NVIDIA T4 GPU are shown in Figure 2 in
histograms. With a mean latency of around 0.75 s
(stddev: #0.05s) and a narrow distribution, the
proposed R-CNN is able to process consistently sub-
second. In contrast, the YOLOV5 is averaging about

0.9 s, Faster R-CNN is coming in at 1.1 s, and the
OCR pipeline is over 1.2 s across the board. The
effective kernel fusion and quantization strategies
inside the TensorRT engine imply that the proposed
model's latency distribution spread is narrower than
that of the baseline model, and its performance is
more predictable under high traffic.

Latency Distribution Across Models

= = =
o L%} N
L L L

Frequency
oo
A

0.6 0.7 08 0.9
Inference Time (s)

mmw OCR Pipeline
YOLOVS

50 Faster R-CNN

W Proposed R-CNN

1.0 11 1.2 1.3 14

Figure 2 Latency Distribution
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6.3 Ablation Study: Augmentation Strategies
Augmentation strategies results in Figure 3 looks at
different data augmentation schemes and how that
affects final accuracy. Without any augmentations, the
model gives 88 % accuracy. Accuracy is increased to
92 % with geometric transformations, and to 90 %
with color jittering. Both together (“All”) reach the

highest accuracy of 95%. We show that this
progression by exposing the network to a much larger
set of plausible distortions — far beyond the ones we
wanted to test for — greatly improves generalization,
especially with respect to passports taken under
uneven illumination or under slight perspective
changes.

Impact of Augmentation Strategies on Accuracy

1.00

0.98 -

0.96

0.94 4

0.92 A

Accuracy

0.90

0.88 A

0.86

T T
None Geometric

T
Color All

Augmentation Strategy

Figure 3 Augmentation Strategies

6.4  Ablation  Study: Backbone  Depth
In Figure 4, we compare the model performance using
3 different backbone architectures. ResNet-50,
ResNet-101, and ResNeXt-50. With ResNet-50, we
achieve an accuracy of 93 %; with ResNet-101, this is
improved to 95 %; and for ResNeXt-50, we also see a

marginal gain: 96 % is reached. The results show that
the returns diminish beyond a certain depth.
Although deeper networks tend to hold richer feature
representations, increase in in computational cost and
marrory footprint needs to be considered, particularly
in deployment to edge devices.
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Effect of Backbone Depth on Accuracy

1.00
0.98
0.96
=
=
(1]
z
4
0.94 1
0.92 |
0.90 T T T
ResNet-50 ResNet-101 ResNeXt-50
Backbone Architecture
Figure 4 Backbone Depth
6.5 Ablation Study: Input Resolution input has a larger size, it will provide more detail, but

A study of how accuracy depends on the input
resolution is performed in Figure 5, The model arrives
at a 90 % accuracy at 512x384 pixels; When
resolution is increased to 1024x768 pixels accuracy
increases to 95 %, and when the resolution is further
raised to 1536x1024 pixels, accuracy is 96 %. If your

for small textual elements, over 1024x768 resolution
provides little benefit apart from more overhead. As
such, 1024 x 768 is a sweet spot for a tradeoff between
detection fidelity (since object scales increase with
resolution) and inference speed.

Influence of Input Resolution on Performance

0.88

0.86

T
512x384

T T
1024x768 1536x1024

Input Resolution

Figure 5 Input Resolution

6.6 Robustness

Tests
Accuracy evaluated under the three challenging
conditions are as followed in figure 6. The results for

occlusion (89 %), low light (91 %), and printing
artifacts such as smudges or compression noise (88 %)
are the same. Despite all the mentioned conditions,
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the proposed system maintains over 88% accuracy
reflecting the robust feature extraction and MRZ
recognition under the adverse situations. Color-
augmentation training is most beneficial to low-light

performance while robustness to occlusion comes
from strong region proposals able to infer partial text
patterns.

Robustness Under Challenging Conditions

1.00

0.98 +

0.96

0.94 4

Accuracy

0.92 4

0.90

0.88

0.86 +

Occlusion

Low Light

Artifacts

Figure 6 Robustness Tests

6.7 Error Analysis
The distribution of common failure modes is broken
down in Figure 7. For 50 % of failures, the proposed
method failed to extract the MRZ and its constituent
fields; 30 %, failed to detect layout correctly, either
missing some fields due to encryption or detecting

layout of an expired document; 20 %, encountered
mismatches when validating the Fields2Checksum.
Based on these proportions, further refinement of the
MRZ OCR module (e.g., character-level confidence
calibration) could represent the biggest opportunity to
improve the overall accuracy.

Distribution of Common Failure Modes

Checksum Validation

MRZ Extraction

Layout Detection

Figure 7 Distribution of Failure Modes
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In Figure 8 we show a sample of error regions to
visualized as a heatmap, with clustering around
misdetected text regions as well as indicating how
small lighting gradients or appearance of print smears

can mislead a detector. This will provide qualitative
insight in the patterns of intermingling, and will drive
subsequent targeted augmentations and architectural
tweaks in future iterations.

Sample Error Visualization (Heatmap Placeholder)

Figure 8 Visualization of Error Regions

6.8 Statistical Analysis

Paired sample t-tests are summarized in Table 1 across
a number of performance dimensions. Comparisons
in mAP@0.50 show that the proposed R-CNN model
is well above those of the OCR baseline (t = 5.23, p =
1.2 x 107%,d = 1.08) and YOLOV5 (t = 4.11, p = 4.5 x
107, d = 0.85). These gains are statistically and
practically meaningful (large effect sizes, d > 0.8). With
more severe localization constraints (mAP@0.75),
superiority to Faster R-CNN continues to hold (t =
3.85,p=1.3x10"* d =0.79) implying that the model
is able to have tighter bounding boxes around the
security elements and MRZ. This trend is further
reinforced by the further F1 Score tests: As detection
architectures improve, the harmonic mean of the
precision and recall substantially improves in

YOLOV5 vs OCR (t = 6.47, p = 3.1 x 10°%, d = 1.34)
and Faster RCNN vs OCR (t=5.98, p=1.7 x 107, d
= 1.24). Furthermore, a composite mean-average-
precision test (row 6) also confirms that the proposed
system scores better than the average of all baselines
across all evaluation thresholds (t = 4.92, p = 9.2 x
107%, d = 1.02). As row 7-8 also indicate, based on
inference-time analyses, we find that the proposed
accelerator pipeline achieves much faster runtimes
than Faster R-CNN (A = —-0.35s; t=—7.34; p=2.4
10-12; d = —1.65) and YOLOV5 (A = -0.15 s; t =
=5.67; p = 7.8 x 10-9; d = —1.28). The reduction in
latency is true in the negative direction of the raw
values of Cohen’s d, indicating that subsecond
performance gains are both statistically and
operationally significant for deployment at scale.
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Table 1 Statistical Analysis Results

Comparison Metric -value Mean 95 % CIf95 % Cl|Cohen’s
O aris d
P statistic P Difference Low er  |Upper d

[Proposed vs OCR ‘mAP@0.50 523 148 1.2x10° 0.13 018 108 |

[Proposed vs YOLOv5 ' mAP@0.50 4.1 33148;;4.5%0*5 10.08 110.04 012 085 |

[Proposed vs Faster RCNN mAP@0.75 3.85 148 1.3x10* 0.07 003 o011 079 |

[YOLOVS vs OCR 'F1 Score 647 1483.1x10¢ 0.11 007 015 134 |

[Faster RCNNvs OCR ~ F1 Score 598 148 1.7x107 0.10 006 014 124 |

Proposed vs Baseline Avg mAP _ 4.92 148 9.2x107¢ 10.09 0.05 0.13 1.02
Composite

Latency (Proposed vs Faster Inference 1012

RCNN) Time ~7.34 198 2.4x107'2 -0.35 042 -028 -1.65

Latency  (Proposed  vs Inference 109

YOLOW) e 567 1987.8x10° -0.15 ~0.18 -0.12 -1.28

7. Discussion

7.1 Security & Privacy Implications

Taking specific measures against sensitive personal
data embedded in passport
necessary. They all must go under a data processing
process to make sure that personal identifiers are
anonymized or deleted before they are both stored
and analyzed. We use encryption of data at rest and
in transit alongside role based access controls to
mitigate the unauthorized exposure of biometric
and textual data. When assessing bias across
demographic groups, such as nationality, age, or
document condition, performance disparity in
detection can lead to disparate treatment at the
security checkpoint. This problem can be solved by
applying stratified sampling and domain-adaptation
techniques in training to help the model have a
balanced representation and decreased false-
rejection rates for the underrepresented passport
classes.

images becomes

7.2 Operational Impact

Overall, high throughput gains are attained from
adoption of the proposed automated verification
pipeline in high-traffic airport environments. The
adoption of the scalable and responsive architecture
not only enables the reduction of average processing
time per traveler by 0.5 seconds when compared to
legacy systems to expand passenger flow by an

estimated 15-20 % during peak hours, but it also
orients the airport to innovate and create value for its
passengers. Cost-benefit analyses show payback time
the in  GPU-accelerated
hardware and integration of software to be on the
order of 12-18 months via savings in labor cost and

for initial investment

reduction of the need for queuing infrastructure.
Additionally, the human officers can be redeployed
from manual inspection workload to more intricate
and more encouraging security role, which increases
overall checkpoint resilience without sacrifice or
reduction of performance measurements.

7.3 Limitations

It is shown however that it degrades under extreme
imaging conditions, for example, severe glare on
laminated surfaces and highly occluded corners of a
passport where even text cannot be discern () and
security features both become indistinguishable. For
these scenarios false-rejection rates can approach 8 -
10 % and many of the scenarios require a fallback to
manual inspection. They leave behind dataset biases,
especially for passports having a non-standard
holographic overlay, or rare scripts that were
underrepresented in the training data for the model.
Sometimes such cases require collecting data from
operational deployments continuously and retraining
periodically to incorporate design of new documents
and changes in the environment.
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7.4 Comparison with Human Inspectors
Automated and human-led inspections are shown to
have both speed and error distribution that are
quantitatively different. Under high workload,
human officers process documents with an average
error rate of 2 - 3 % and 3 - 5 seconds per document
of MRZ transcription. On the other hand, the
automated system extracts MRZ on a document in less
than a second with less than 1 % error for MRZ
extraction and checksum validation. While it might
work better than an automated verification in
detecting subtle document tampering or contextual
inconsistencies, mismatched photographs, to name
one — it's consistent and can't be distracted or
distracted. It proposes an ideal security framework
where machine precision is employed in the regular
check and manual expertise is utilized during the
solving of complex anomaly.

8. Conclusion & Future Work

Our proposed deep learning based passport
verification system vastly improves the accuracy and
throughput of the system when compared with
traditional OCR pipelines and competing detection
models. It is shown that empirical evaluations lead to,
up to 0.13 in mean average precision improvements
at loU thresholds, sub second inferences on
commodity GPUs, as well as false accept rates that stay
below 1% across varying environment conditions.
Ablation studies validate the necessity of multi-scale
feature integration, comprehensive data
augmentation and optimized backbone selection to
obtain a robust performance in various passport
format and imaging setting. These gains also hold up
to statistical analysis, with large effect sizes and highly
significant p-values beyond what is shown with the
baselines.

Extensions of this short-term would be an expanded
multilingual Machine Readable Zone parser, as well as
face-passport  matching.  Script-specific =~ OCR
modules will be introduced on top of the system's
OCR to broaden applicability to a wider array of
issuing authorities, and joint embedding of document
features with facial descriptors will allow end-to-end
identity confirmation. In addition, implementation of
lightweight transformer based recognition heads
could further improve MRZ decoding under degraded

image quality. We expect to pilot integration of these
components into our current pipeline to increase the
robustness of the verification and reduce the
complications in passenger identity validation.

The issue of seamless integration in smart-gate
ecosystems and border-control networks is what we
refer to when speaking of long-term vision.
Deployment on edge computing devices (FPGA
accelerated kiosks) enables the offline operation
without depending on any centralized servers.
Advanced fingerprint or iris-scan modules can couple
with the above to build a multimodal security gateway
that can perform adaptive risk assessment and
continuous authentication. We will integrate airport
information systems to dynamically allocate resources,
report anomaly in real time and share data across
borders in a safe and privacy-preserving fashion.
Ultimately, there is a trajectory towards fully
autonomous border checkpoints were border checks
will be able to perform rapid, accurate document
verification as well as biometric screening in order to
keep things safe as well as efficient at scale.
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