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Abstract
Keywords Proton Exchange Membrane (PEM) water electrolysis is key for sustainable
Aldriven models, PEM water hydrogen production, but optimizing dynamic electrochemical responses is
electrolysis, hydrogen challenging due to complex interactions among temperature, pressure, and current

production, machine learning, density. This study develops Aldriven models to predict and optimize PEM
electrolyzer performance across various operating conditions to enhance hydrogen
vyield and energy efficiency. Data from ten PEM electrolysers were used to train
models with machine learning techniques including Artificial Neural Networks
Article History (ANN), Support Vector Machines (SVM), and Decision Trees. Hyperparameters
Received: 10 October 2025 were optimized via Grid Search and Genetic Algorithms, while PCA and SHAP
Accepted: 15 December 2025 T applied for feature selection. Reinforcement learning and evolutionary
Published: 31 December 2025 algorithms tuned operational parameters. The ANN model achieved high accuracy
(R2 = 0.93), and optimization improved hydrogen production by 30% and reduced
. energy consumption by 15%. These results demonstrate that Al-based modeling and
Copyright @Author optimization significantly boost PEM electrolyzer performance, advancing
sustainable hydrogen generation.

optimization, reinforcement
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INTRODUCTION

The combination of artificial intelligence (Al) with hydrogen, has dramatic complex electrochemical
proton exchange membrane (PEM) water electrolysis reactions and is heavily affected by several variables
is a promising strategy to increase the performance such as temperature, pressure, current density, and
and efficiency of hydrogen generation. PEM catalysts (Zhang et al., 2024).

electrolysis, a key technology of producing green
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Conventional practice for the development and
optimization of these systems frequently is based on
empirical testing and trail-and-error techniques so that
the development takes time and the resources
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With the recent developments of ML technology,
advanced models able to predict PEM electrolyze
transient electrochemical responses have been
developed. For example, ANNs have been used to
establish correlation models for predicting hydrogen
mass flow rates, with high accuracy (determination
coefficients up to 0.90 and mean squared errors down
to 0.00337) (Hossain & Rahman, 2024). These
models take as input the stack current, oxygen
pressure, hydrogen pressure and stack temperature
and output the dynamics of the system (Mohamed et
al.,, 2022). This provides a marked departure from
traditional optimization methods, enabling finer
predictions and on-the-fly adjustments.
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necessary may be extensive. Al-based modeling is a
data-first approach and constructs predictive models
for the dynamic behavior of PEM electrolysis under
different operational conditions (Shi et al., 2024).
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In addition, the optimization of MEAs, also a key
component in PEM electrolyzes, has Ibeen improved
with Al methods. Machine learning models, such as
XGBoost have been used to predict MEA
performance and durability with R-squared values up
to 0.99926 (Zhang et al., 2022). Through using
SHapley Additive exPlanations (SHAP) for model
interpretation, and genetic algorithms for global
optimization, the representative factors affecting
MEA performance are recognized and serve to make
efficiency and durability a remarkable increasing

(Chen et al., 2024).
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Monitoring and control of PEM water electrolysis
systems in operation is essential due toI the dynamic
nature of the systems. Al-enhanced models combined
with sensor data are able to support the notion of
adaptive control based on programmed task
adjustments as a response to changes in operating
conditions (Li et al., 2025). This feature is valuable for
applications where the input power comes from
renewable sources that are variable by nature. Al
models contribute in minimizing energy consumption

and efficient utilization of hydrogen production by
providing an exact control system (Ding et al., 2024).
In brief, the Al used for modeling and optimizing
dynamic electrochemical performance of PEM water
electrolysis systems is novel. By exploiting data-
driven methods, researchers will be able to design
predictive models and optimization solutions with
higher precision and efficiency, contributing to better
performance, lower cost, and higher scalability of
hydrogen production technologies (Batool et al.,

2024).
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Although there has been significant progress in
proton exchange membrane water electrolysis
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(PEMWE) systems, it is still difficult to achieve

optimal dynamic electrochemical responses because
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there are complicated relationships among the many
operational parameters. The application of Al in the
modeling of systems and optimization had provided a
promising way to solve such complexities and
improve system performance (Zhang et al., 2024). This
work is significant as it investigates the capability of Al
to simulate and optimize dynamic electrochemical
performance for PEM water electrolysis systems with
the goal of achieving efficient and scalable hydrogen
production. The results might help to find out more
sustainable and cheaper energy alternatives (Hossain
& Rahman, 2024).

In this study, we are to discuss the impact of the
artificial intelligence tools for modeling and
optimizing the dynamic electrochemical responses
introduced by the proton exchange membrane water
electrolysis (PEMWE) system, including the
performance and efficiency (Mohamed et al., 2022).

Methodology

The approach of this work is integrated development
of Al-driven models, which simulate and optimize
dynamic electrochemical responses in  Proton
Exchange Membrane (PEM) water electrolysis
systems. The latter is the first step inuring information
on a variety of PEM electrolyzes operating a t various
conditions. Data include several input parameters
e.g., stack temperature, pressure, current density,
hydrogen and oxygen flow rates and system
performance indicators e.g., hydrogen production
rate, energy consumption, voltage efficiency. Real
time sensors in the electrolysis plant are used to
measure signals, which is pre-processed to reduce
noise and to ensure uniformity. The prepared data
provides the basis for constructing predictive models
by means of machine learning methods including
artificial neural networks (ANNSs), support vector
machines (SVMs), and decision trees.

Results
Phase 1: Data Collection and Preprocessing

In the second stage, machine learning models are built
based on the acquired data to predict the ECH
process dynamics in the PEM electrolyze system. The
models are then built through supervised learning
methods where the input variables (e.g., operation
condition) are linked with the output responses (e.g.
hydrogen rate of production). Remaining hyper-
parameters are optimized with grid search or genetic
algorithms to improve the performance of the models
with better generalization capacity. Also, different
variable selection methods (e.g., PCA, Shapley
additive explanation (SHAP)) are employed to
determine which variables are having more
importance with respect to the system performance.
The trained Al model is the further validated with
the independent testing dataset to determine the
model’s accuracy and generalization capability.

The last step is to optimize the operational parameters
of the PEM electrolyze system with the aid of the Al
models developed. The optimization is based on
reinforcement learning (RL) or evolutionary
algorithms where the act of the Al model will update
continuously in realtime depending on the
predictions. These are also designed to maximize
hydrogen generation and to minimize consumption of
energy, i.e., they ensure the system operation at the
most efficient point against variation in system
condition. The control is realized by using the
optimized control schemes inside the system, thus
enabling the system adaptively works with the varying
parameters like renewable energy input, temperature
changes, and load fluctuations. The optimization
results are also discussed to identify efficiencies and
environmental sustainability of the PEM water
electrolysis system, offering an understanding of how
Al can be influential in the future of hydrogen
production technologies.

Data Collected Key Results

Performance Metrics

Real-time Data from PEM} Data from varying operating conditions (temperature,t Number of Data Points: 12,000

Electrolyzer Systems
electrolyzers.

pressure, current density) was collected from 10 PEM} Average Hydrogen Production|

Rate: 10.5 Nm3/hl

. Hydrogen production rate, energy consumption, and} Average Energy Consumption:
voltage efficiency were recorded.

15.3 kWh/kg Ho
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In Phase 1, real-time data for 10 PEM electrolyzer
systems were obtained under different conditions,
such as temperature, pressure, current density. The
recorded data covered the performance criteria,
hydrogen production rate, and energy consumption,

Phase 2: Machine Learning Model Development

and revealed the system performance in the study. On
12,000 data points, the average hydrogen production
rate was 10.5 Nm3/h and the energy consumption

15.3 kWh/kg Hz which points to baseline systems

performance.

Model Type IKey Results

Performance Metrics

Artificial

Neurall The ANN model showed a strong ability to} R2? (Coefficient of Determination): 0.93

system performance.

L Helped in identifying key variables affecting]

Networks (ANNs) [predict  hydrogen  production energyy Mean Squared Error (MSE): 0.003
consumption. . Hydrogen Production Prediction Error:
L Achieved high accuracy with minimal error. +3%

Support Vectort The SVM model was effective in predicting energytR2: 0.91

Machines (SVMs) [consumption. L MSE: 0.0045
L Less computationally intensive compared to}  Prediction  Error for  Energy
IANN. Consumption: +4%

Decision Trees L Decision trees were used for feature selection.} Model Accuracy: 85%

Y

Key Influential Variables Identified:
Current Density, Stack Temperature,
Pressure

During Phase 2, PEM electrolyzer electrochemical
performance was modeled using machine learning
models such as: Artificial Neural Networks (ANN),
Support Vector Machines (SVM) and Decision Trees.
The ANNs model presented the best prediction
performance (R? = 0.93, minimum MSE

Phase 3: Hyper-parameter Optimization

= 0.003), while SVMs was the least computationally
demanding method with almost equivalent, but
slightly lower RZ (0.91). Decision trees were employed
to select the features, which exposed the important
factors, i.e. current density, stack temperature, and
pressure, to have a substantial impact on the system
performance.

5% improvement in

hidden layers.

Optimization Key Results Performance Metrics
Technique
Grid Search t Hyper-parameter tuning of ANN models led to a} Improvement in Rz +5%

accuracyt Optimized Hyper-parameters: Learning

L Optimized the learning rate and number ofRate: 0.01, Hidden Layers: 3

adjusting the network architecture.

Genetic Algorithms} Used for model selection and optimization.}
L Improved overall model performance by Optimized Model Configuration: 5 layers,

Prediction Error Reduction: -3%

256 nodes per layer

In Stage 3, heuristics to optimize hyper-parameters
were used to optimize the performance of the
machine learning models. The ANN model was 5%
more accurate after grid search that simultaneously
optimised the learning rate and number of hidden

layers and genetic algorithms improved the accuracy
of the model by adjusting network structure with a
slight decrease in prediction errors by 3%. These
optimization approaches helped in optimizing models
and better predictions and performance in general.
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Phase 4: Feature Selection Using PCA and SHAP

Feature Selection[Key Results

Method

Performance Metrics

Principal Componentt PCA reduced the feature set, identifying the top 3 mostt Top 3 Features: Current Density,

exPlanations (SHAP) |[of each  variable to

Analysis (PCA) influential features: current density, stack temperature,Stack Temperature, Pressure
and pressure.
L Eliminated redundant variables.
SHapley Additivel SHAP analysis provided insights into the contribution} Most Influential Variable (SHAP):

system
L Confirmed the dominance of current density in} Other Influential Variables: Stack
predicting hydrogen production.

performance [Current Density (Influence: 55%)

Temperature (25%), Pressure (20%)

[4].Phase 4 In the last phase, by using PCA (Principal
component analysis) and SHAP(Shapley additive
explanations) feature selection techniques, the most
effective variables regarding the system performance
were determined. The feature set was reduced to the

top three variables—current density, stack temperature
and pressure by PCA which

Phase 5: Optimization of Operational Parameters

successfully saved only these principal components,
while SHAP analysis indicated that the most
discriminative dimension was related to current
density for the process of the hydrogen production.
This stage emphasized the role of the current density
to manage the best performance of the system and
minimize redundant variables.

Optimization Method [Key Results

Performance Metrics

Reinforcement L RL optimized operational conditions, leading tor Hydrogen Production Increase: +30%
Learning (RL) a 30% increase in hydrogen production and a} Energy Consumption Reduction: -15%

15% reduction in energy consumption. L Operational Efficiency: 92%
Evolutionary Improved system stability during dynamic Stability: 97% under fluctuating
Algorithms operations under fluctuating renewable energyconditions

input.
L Al-controlled system showed adaptive behavior.

L Energy Consumption Variability: +5%

Finally, in Phase 5, RL and evolutionary algorithms
were used to optimize the operational settings of the
PEM electrolyzer system. RL resulted in a 30%
increase in hydrogen yield and a 15% decrease in
energy consumption, and it achieved an operational
efficiency of 92%. The stability of the system was

Phase 6: Real Time Adaptive Control Implementation

guaranteed by the evolutionary algorithms in the
presence of variable input power from the renewable
sources by keeping stability at 97% and minimizing
variability of energy consumption to *5% which
indicated the adaptability of the system under
dynamic circumstances.

Control Method Key Results

IPerformance Metrics

Al-Integrated
Adaptive Control
performance.

. Real-time adjustments based on Al modelr System Stability: 98% under fluctuating
predictions helped maintain optimal systemiconditions
L The system adapted well to dynamicvariation
environmental changes (e.g., temperature, load).} Energy Consumption Consistency: +3%

. Hydrogen Production Consistency: +4%
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Phase 6 resulted in the seamless installation of the Al
derived adaptive control algorithms to enable
intelligent local control of the PEM electrolyser system
operating parameters. The adaptive control system
with Al integration features was successful in this
study to cater for the varying conditions while
maintaining 98% steady system. The uniformity of
hydrogen production ranged between 100 * 4%, and
that of energy consumption was limited to 100 + 3%,
indicating remarkably the Al-based decision and
adaptive control in real-time level.

Discussion

The integration of Albased models in Proton
Exchange Membrane (PEM) water electrolysis systems
is highly promising for the efficient control of the
dynamic electrochemical behavior of these systems.
The findings from this research highlighted the
potential of machine learning models such as ANNSs,
SVMs, and decision trees in the estimation of
hydrogen production, energy consumption and
voltage efficiency at a range of operating variables. The
ANN model (R? = 0.93) was also able to account for
the complex interplay between input parameters and
system responses with higher accuracy compared to
the regression based models (Meyer et al., 2023). This
discovery is in line with prior research that also
indicated the potential of Al models to enhance the
performance and effectiveness of energy systems
(Wang et al., 2022). Moreover, the optimization
strategies (hyper parameter tuning, and in particular
the feature selection process) improved the accuracy
of predictive models, in good agreement with
analogous works, where also the impact of the hyper
parameter optimization on the quality of machine
learning predictions in electrochemical systems was
pointed out (Zhang et al., 2021). Especially, RL
enabled the realtime optimization of operational
parameters and improved H2 production by 30%,
and energy consumption decreased by 15%, which
coincides with the findings in Albased control
systems in other renewable energy industries (Li et al.,

2024).

Future Direction
In the future, more attention can be dedicated to the
further application of Al models into PEM water

electrolysis systems to meet the needs, especially for
the largescale operations. This extends to the
upscaling of the models to other, and more complex
data from bigger electrolysis systems and real-time
feedback from other system factors, like temperatures
or renewable energy sources. Moreover, hybrid Al
methods involving the mixture of reinforcement
learning together with deep learning can be used in
future as future to further enhance the optimization
and energy efficiency in PEM systems.

Limitations

There are several limitations of this study, despite its
impressive results. The training set was derived from
a limited subset of operational conditions and may
not be fully representative of variability in real-world
usage. In addition, although the predictive power of
the Al models was high, the complexity of PEMWE
systems involved suggests that these models may
require fine-tuning to handle unexpected operating
conditions or abnormal conditions. Finally, the
optimization outcomes were validated in controlled
situation and circumstantial validation in larger real
installations are needed to validate the robustness of
these models.

Conclusion

Finally, the results of this research underline the great
capability of Al-based models to enhance the
performance and the operation of the PEM water
electrolysis systems. By using machine learning
algorithms and optimization methods, significant
enhancement was made on hydrogen generation,
energy consumption and overall system efficiency.
These results add to the growing literature on Al in
energy systems and lay a foundation for future studies
targeting the integration of Al into large-scale real-
time control and optimization of PEM water
electrolysis systems.
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