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 Abstract 

Proton Exchange Membrane (PEM) water electrolysis is key for sustainable 
hydrogen production, but optimizing dynamic electrochemical responses is 
challenging due to complex interactions among temperature, pressure, and current 
density. This study develops AI-driven models to predict and optimize PEM 
electrolyzer performance across various operating conditions to enhance hydrogen 
yield and energy efficiency. Data from ten PEM electrolysers were used to train 
models with machine learning techniques including Artificial Neural Networks 
(ANN), Support Vector Machines (SVM), and Decision Trees. Hyperparameters 
were optimized via Grid Search and Genetic Algorithms, while PCA and SHAP 
were applied for feature selection. Reinforcement learning and evolutionary 
algorithms tuned operational parameters. The ANN model achieved high accuracy 
(R² = 0.93), and optimization improved hydrogen production by 30% and reduced 
energy consumption by 15%. These results demonstrate that AI-based modeling and 
optimization significantly boost PEM electrolyzer performance, advancing 
sustainable hydrogen generation. 
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INTRODUCTION 
The combination of artificial intelligence (AI) with 
proton exchange membrane (PEM) water electrolysis 
is a promising strategy to increase the performance 
and efficiency of hydrogen generation. PEM 
electrolysis, a key technology of producing green 

hydrogen, has dramatic complex electrochemical 
reactions and is heavily affected by several variables 
such as temperature, pressure, current density, and 
catalysts (Zhang et al., 2024). 
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Conventional practice for the development and 
optimization of these systems frequently is based on 
empirical testing and trail-and-error techniques so that 
the development takes time and the resources 

necessary may be extensive. AI-based modeling is a 
data-first approach and constructs predictive models 
for the dynamic behavior of PEM electrolysis under 
different operational conditions (Shi et al., 2024). 
 

 
 

With the recent developments of ML technology, 
advanced models able to predict PEM electrolyze 
transient electrochemical responses have been 
developed. For example, ANNs have been used to 

establish correlation models for predicting hydrogen 
mass flow rates, with high accuracy (determination 
coefficients up to 0.90 and mean squared errors down 
to 0.00337) (Hossain & Rahman, 2024). These 
models take as input the stack current, oxygen 
pressure, hydrogen pressure and stack temperature 
and output the dynamics of the system (Mohamed et 
al., 2022). This provides a marked departure from 
traditional optimization methods, enabling finer 
predictions and on-the-fly adjustments. 

In addition, the optimization of MEAs, also a key 
component in PEM electrolyzes, has   been improved 
with AI methods. Machine learning models, such as 
XGBoost have been used to predict MEA 
performance and durability with R-squared values up 
to 0.99926 (Zhang et al., 2022). Through using 
SHapley Additive exPlanations (SHAP) for model 
interpretation, and genetic algorithms for global 
optimization, the representative factors affecting 

MEA performance are recognized and serve to make 
efficiency and durability a remarkable increasing 
(Chen et al., 2024). 
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Monitoring and control of PEM water electrolysis 
systems in operation is essential due to  the dynamic 
nature of the systems. AI-enhanced models combined 
with sensor data are able to support the notion of 
adaptive control based on programmed task 
adjustments as a response to changes in operating 
conditions (Li et al., 2025). This feature is valuable for 
applications where the input power comes from 
renewable sources that are variable by nature. AI 
models contribute in minimizing energy consumption 

and efficient utilization of hydrogen production by 
providing an exact control system (Ding et al., 2024). 
In brief, the AI used for modeling and optimizing 
dynamic electrochemical performance of PEM water 
electrolysis systems is novel. By exploiting data-
driven methods, researchers will be able to design 
predictive models and optimization solutions with 
higher precision and efficiency, contributing to better 
performance, lower cost, and higher scalability of 
hydrogen production technologies (Batool et al., 
2024). 
 
 

Although there has been significant progress in 
proton exchange membrane water electrolysis 

(PEMWE) systems, it is still difficult to achieve 
optimal dynamic electrochemical responses because 
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there are complicated relationships among the many 
operational parameters. The application of AI in the 
modeling of systems and optimization had provided a 
promising way to solve such complexities and 
improve system performance (Zhang et al., 2024). This 
work is significant as it investigates the capability of AI 
to simulate and optimize dynamic electrochemical 
performance for PEM water electrolysis systems with 
the goal of achieving efficient and scalable hydrogen 
production. The results might help to find out more 
sustainable and cheaper energy alternatives (Hossain 
& Rahman, 2024). 
In this study, we are to discuss the impact of the 
artificial intelligence tools for modeling and 
optimizing the dynamic electrochemical responses 
introduced by the proton exchange membrane water 
electrolysis (PEMWE) system, including the 
performance and efficiency (Mohamed et al., 2022). 
 
Methodology  
The approach of this work is integrated development 
of AI-driven models, which simulate and optimize 
dynamic electrochemical responses in Proton 
Exchange Membrane (PEM) water electrolysis 
systems. The latter is the first step inuring information 

on a variety of PEM electrolyzes operating a t various 
conditions. Data include several input parameters 
e.g., stack temperature, pressure, current density, 
hydrogen and oxygen flow rates and system 
performance indicators e.g., hydrogen production 
rate, energy consumption, voltage efficiency. Real 
time sensors in the electrolysis plant are used to 
measure signals, which is pre-processed to reduce 
noise and to ensure uniformity. The prepared data 

provides the basis for constructing predictive models 
by means of machine learning methods including 
artificial neural networks (ANNs), support vector 
machines (SVMs), and decision trees. 

In the second stage, machine learning models are built 
based on the acquired data to predict the ECH 
process dynamics in the PEM electrolyze system. The 
models are then built through supervised learning 
methods where the input variables (e.g., operation 
condition) are linked with the output responses (e.g. 
hydrogen rate of production). Remaining hyper-
parameters are optimized with grid search or genetic 
algorithms to improve the performance of the models 
with better generalization capacity. Also, different 
variable selection methods (e.g., PCA, Shapley 
additive explanation (SHAP)) are employed to 
determine which variables are having more 
importance with respect to the system performance. 
The trained AI model is the further validated with 
the independent testing dataset to determine the 
model’s accuracy and generalization capability. 
The last step is to optimize the operational parameters 
of the PEM electrolyze system with the aid of the AI 
models developed. The optimization is based on 
reinforcement learning (RL) or evolutionary 
algorithms where the act of the AI model will update 
continuously in real-time depending on the 
predictions. These are also designed to maximize 
hydrogen generation and to minimize consumption of 
energy, i.e., they ensure the system operation at the 
most efficient point against variation in system 
condition. The control is realized by using the 
optimized control schemes inside the system, thus 
enabling the system adaptively works with the varying 
parameters like renewable energy input, temperature 
changes, and load fluctuations. The optimization 
results are also discussed to identify efficiencies and 
environmental sustainability of the PEM water 
electrolysis system, offering an understanding of how 
AI can be influential in the future of hydrogen 
production technologies. 

 
Results  
Phase 1: Data Collection and Preprocessing 

Data Collected Key Results Performance Metrics 
Real-time Data from PEM 
Electrolyzer Systems 

- Data from varying operating conditions (temperature, 
pressure, current density) was collected from 10 PEM 
electrolyzers. 
- Hydrogen production rate, energy consumption, and 
voltage efficiency were recorded. 

- Number of Data Points: 12,000 
- Average Hydrogen Production 
Rate: 10.5 Nm³/h 
- Average Energy Consumption: 
15.3 kWh/kg H₂ 
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In Phase 1, real-time data for 10 PEM electrolyzer 
systems were obtained under different conditions, 
such as temperature, pressure, current density. The 
recorded data covered the performance criteria, 
hydrogen production rate, and energy consumption,  
 

and revealed the system performance in the study. On 
12,000 data points, the average hydrogen production 
rate was 10.5 Nm³/h and the energy consumption 
15.3 kWh/kg H₂ which points to baseline systems 
performance.

Phase 2: Machine Learning Model Development 
Model Type Key Results Performance Metrics 
Artificial Neural 
Networks (ANNs) 

- The ANN model showed a strong ability to 
predict hydrogen production and energy 
consumption. 
- Achieved high accuracy with minimal error. 

- R² (Coefficient of Determination): 0.93 
- Mean Squared Error (MSE): 0.003 
- Hydrogen Production Prediction Error: 
±3% 

Support Vector 
Machines (SVMs) 

- The SVM model was effective in predicting energy 
consumption. 
- Less computationally intensive compared to 
ANN. 

-R²: 0.91 
- MSE: 0.0045 
- Prediction Error for Energy 
Consumption: ±4% 

Decision Trees - Decision trees were used for feature selection. 
- Helped in identifying key variables affecting 
system performance. 

- Model Accuracy: 85% 
- Key Influential Variables Identified: 
Current Density, Stack Temperature, 
Pressure 

During Phase 2, PEM electrolyzer electrochemical 
performance was modeled using machine learning 
models such as: Artificial Neural Networks (ANN), 
Support Vector Machines (SVM) and Decision Trees. 
The ANNs model presented the best prediction 
performance (R² = 0.93, minimum MSE  
 

= 0.003), while SVMs was the least computationally 
demanding method with almost equivalent, but 
slightly lower R² (0.91). Decision trees were employed 
to select the features, which exposed the important 
factors, i.e. current density, stack temperature, and 
pressure, to have a substantial impact on the system 
performance. 

Phase 3: Hyper-parameter Optimization 
Optimization 
Technique 

Key Results Performance Metrics 

Grid Search - Hyper-parameter tuning of ANN models led to a 
5% improvement in accuracy. 
- Optimized the learning rate and number of 
hidden layers. 

- Improvement in R²: +5% 
- Optimized Hyper-parameters: Learning 
Rate: 0.01, Hidden Layers: 3 

Genetic Algorithms - Used for model selection and optimization. 
- Improved overall model performance by 
adjusting the network architecture. 

- Prediction Error Reduction: -3% 
- Optimized Model Configuration: 5 layers, 
256 nodes per layer 

In Stage 3, heuristics to optimize hyper-parameters 
were used to optimize the performance of the 
machine learning models. The ANN model was 5% 
more accurate after grid search that simultaneously 
optimised the learning rate and number of hidden 

layers and genetic algorithms improved the accuracy 
of the model by adjusting network structure with a 
slight decrease in prediction errors by 3%. These 
optimization approaches helped in optimizing models 
and better predictions and performance in general. 
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Phase 4: Feature Selection Using PCA and SHAP 
Feature Selection 
Method 

Key Results Performance Metrics 

Principal Component 
Analysis (PCA) 

- PCA reduced the feature set, identifying the top 3 most 
influential features: current density, stack temperature, 
and pressure. 
- Eliminated redundant variables. 

- Top 3 Features: Current Density, 
Stack Temperature, Pressure 

SHapley Additive 
exPlanations (SHAP) 

- SHAP analysis provided insights into the contribution 
of each variable to system performance. 
- Confirmed the dominance of current density in 
predicting hydrogen production. 

- Most Influential Variable (SHAP): 
Current Density (Influence: 55%) 
- Other Influential Variables: Stack 
Temperature (25%), Pressure (20%) 

[4].Phase 4 In the last phase, by using PCA (Principal 
component analysis) and SHAP(Shapley additive 
explanations) feature selection techniques, the most 
effective variables regarding the system performance 
were determined. The feature set was reduced to the 
top three variables—current density, stack temperature 
and pressure by PCA which  
 

successfully saved only these principal components, 
while SHAP analysis indicated that the most 
discriminative dimension was related to current 
density for the process of the hydrogen production. 
This stage emphasized the role of the current density 
to manage the best performance of the system and 
minimize redundant variables. 

 
Phase 5: Optimization of Operational Parameters 

Optimization Method Key Results Performance Metrics 
Reinforcement 
Learning (RL) 

- RL optimized operational conditions, leading to 
a 30% increase in hydrogen production and a 
15% reduction in energy consumption. 

- Hydrogen Production Increase: +30% 
- Energy Consumption Reduction: -15% 
- Operational Efficiency: 92% 

Evolutionary 
Algorithms 

- Improved system stability during dynamic 
operations under fluctuating renewable energy 
input. 
- AI-controlled system showed adaptive behavior. 

- Stability: 97% under fluctuating 
conditions 
- Energy Consumption Variability: ±5% 

Finally, in Phase 5, RL and evolutionary algorithms 
were used to optimize the operational settings of the 

PEM electrolyzer system. RL resulted in a 30% 
increase in hydrogen yield and a 15% decrease in 
energy consumption, and it achieved an operational 
efficiency of 92%. The stability of the system was  

guaranteed by the evolutionary algorithms in the 
presence of variable input power from the renewable 
sources by keeping stability at 97% and minimizing 
variability of energy consumption to ±5% which 
indicated the adaptability of the system under 
dynamic circumstances. 

 
Phase 6: Real-Time Adaptive Control Implementation 
Control Method Key Results Performance Metrics 
AI-Integrated 
Adaptive Control 

- Real-time adjustments based on AI model 
predictions helped maintain optimal system 
performance. 
- The system adapted well to dynamic 
environmental changes (e.g., temperature, load). 

- System Stability: 98% under fluctuating 
conditions 
- Hydrogen Production Consistency: ±4% 
variation 
- Energy Consumption Consistency: ±3% 
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Phase 6 resulted in the seamless installation of the AI 
derived adaptive control algorithms to enable 
intelligent local control of the PEM electrolyser system 
operating parameters. The adaptive control system 
with AI integration features was successful in this 
study to cater for the varying conditions while 
maintaining 98% steady system. The uniformity of 
hydrogen production ranged between 100 ± 4%, and 
that of energy consumption was limited to 100 ± 3%, 
indicating remarkably the AI-based decision and 
adaptive control in real-time level. 
 
Discussion 
The integration of AI-based models in Proton 
Exchange Membrane (PEM) water electrolysis systems 
is highly promising for the efficient control of the 
dynamic electrochemical behavior of these systems. 
The findings from this research highlighted the 
potential of machine learning models such as ANNs, 
SVMs, and decision trees in the estimation of 
hydrogen production, energy consumption and 
voltage efficiency at a range of operating variables. The 
ANN model (R² = 0.93) was also able to account for 
the complex interplay between input parameters and 
system responses with higher accuracy compared to 
the regression based models (Meyer et al., 2023). This 
discovery is in line with prior research that also 
indicated the potential of AI models to enhance the 
performance and effectiveness of energy systems 
(Wang et al., 2022). Moreover, the optimization 
strategies (hyper parameter tuning, and in particular 
the feature selection process) improved the accuracy 
of predictive models, in good agreement with 
analogous works, where also the impact of the hyper 
parameter optimization on the quality of machine 
learning predictions in electrochemical systems was 
pointed out (Zhang et al., 2021). Especially, RL 
enabled the real-time optimization of operational 
parameters and improved H2 production by 30%,  
and energy consumption decreased by 15%, which 
coincides with the findings in AI-based control 
systems in other renewable energy industries (Li et al., 
2024). 
 
Future Direction 
In the future, more attention can be dedicated to the 
further application of AI models into PEM water 

electrolysis systems to meet the needs, especially for 
the large-scale operations. This extends to the 
upscaling of the models to other, and more complex 
data from bigger electrolysis systems and real-time 
feedback from other system factors, like temperatures 
or renewable energy sources. Moreover, hybrid AI 
methods involving the mixture of reinforcement 
learning together with deep learning can be used in 
future as future to further enhance the optimization 

and energy efficiency in PEM systems. 
 
Limitations 
There are several limitations of this study, despite its 
impressive results. The training set was derived from 
a limited subset of operational conditions and may 
not be fully representative of variability in real-world 

usage. In addition, although the predictive power of 
the AI models was high, the complexity of PEMWE 
systems involved suggests that these models may 
require fine-tuning to handle unexpected operating 
conditions or abnormal conditions. Finally, the 
optimization outcomes were validated in controlled 
situation and circumstantial validation in larger real 
installations are needed to validate the robustness of 
these models. 
 
Conclusion 
Finally, the results of this research underline the great 
capability of AI-based models to enhance the 
performance and the operation of the PEM water 
electrolysis systems. By using machine learning 
algorithms and optimization methods, significant 
enhancement was made on hydrogen generation, 
energy consumption and overall system efficiency. 
These results add to the growing literature on AI in 
energy systems and lay a foundation for future studies 
targeting the integration of AI into large-scale real-
time control and optimization of PEM water 
electrolysis systems. 
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